import torchvision from consts import CIFAR_DIR #optional transformations: # https://pytorch.org/vision/0.11/transforms.html #training data using torchvision cifar. cifar_data_train = torchvision.datasets.CIFAR10(root = CIFAR_DIR, train = True, transform = None, download = True) #example of cifar data sample. It is an image, class example. # here, the image is the image (PIL, or pillow) and the corresponding label, frog. I've chopped the dataset to only include cats # and dogs, so we can apply a different form of classification so it's easier to perform example_data = cifar_data_train[0] print(f'items in an instance of cifar10: {len(example_data)}') example_data[0].show() print(f'class corresponding to image: {example_data[1]}')